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Abstract

In this paper we introduce a new class of stochastic Petri nets in which one or more places can hold 
uid rather

than discrete tokens. We de�ne a class of 
uid stochastic Petri nets in such a way that the discrete and continuous

portions may a�ect each other. Following this de�nition we provide equations for their transient and steady-state

behavior. We present several examples showing the utility of the construct in communication network modeling

and reliability analysis, and discuss important special cases. We then discuss numerical methods for computing the

transient behavior of such nets. Finally, some numerical examples are presented.
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1 Introduction

One of the di�culties encountered while using Petri nets is that the reachability graph tends to be very large

in practical problems. Drawing a parallel with 
uid 
ow approximations in performance analysis of queueing

systems, we may de�ne 
uid within a Petri-net to approximate token movement. Alternatively, some physical

systems have not previously admitted a Petri net modeling approach, as they explicitly contain continuous


uid-like quantities which are controlled with discrete logic. This paper presents a new methodology for

modeling such systems.

Stochastic 
uid 
owmodels are increasingly used in the performance analysis of communications [3, 10, 13]

and manufacturing systems. On the other hand, stochastic Petri nets with discrete places provide a useful

framework for specifying and solving performance and reliability models of discrete event dynamic systems

[1, 6, 9, 17, 19]. It is natural to extend the stochastic Petri net framework to Fluid Stochastic Petri Nets

(FSPNs) by introducing places with continuous tokens and arcs with 
uid 
ow so as to handle stochastic


uid 
ow systems. This paper extends the model in an earlier paper [18] by allowing the level of 
uid

in continuous places to a�ect the enabling of timed transitions and the rates of 
uid 
ow into and out

of continuous places. Rules for transition enabling and �ring are extended to re
ect the notion that 
ow

through a 
uid place represents token movement.

An FSPN contains two types of places: discrete places containing a non-negative integer number of

tokens, and continuous places containing 
uid. Transition �rings are determined by both discrete places

and continuous places, and 
uid 
ow is permitted through the enabled timed transitions in the Petri net.

Associating exponentially distributed or zero �ring time with transitions, we can then write the di�erential

equations for the underlying stochastic process. We also provide additional examples of FSPN usage, and

discuss numerical issues arising in the solution of the underlying dynamic equations.

The main motivation of this paper is to put the research by Mitra and his colleagues [3, 10, 13] in the

context of Petri nets, to make some extensions and to investigate the numerical transient analysis of such

stochastic 
uid models.

The paper is organized as follows. In Section 2 we develop the 
uid model of stochastic Petri nets and in

Section 3 we discuss their analysis. Examples and special cases are described in Section 4, numerical solution

techniques are described in Section 5, while numerical examples are given in Section 6. The paper concludes

in Section 7.

2 The Stochastic Fluid Model

Following the customary notation [8, 14, 16] for de�ning Petri nets and their extensions, we de�ne a 
uid

stochastic Petri net (FSPN) as a 8-tuple (P; T ;A;m0;F ;W;R;G ). P is a set of places partitioned into a
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set of discrete places Pd and a set of continuous places Pc. The number of 
uid places is F � 0, indexed by

k = 1; 2; � � � ; F . In a graphical representation, we shall depict continuous places by means of two concentric

circles. The set of transitions T is partitioned into a set of (exponentially distributed �ring) timed transitions

TE and a set of immediate transitions TI . The set of directed arcs A is partitioned into two subsets Ac and

Ad. Ac is a subset of (Pc � TE) [ (TE � Pc) while Ad is a subset of (Pd � T ) [ (T � Pd). In a graphical

representation, arcs in Ac are drawn as double lines (to suggest a pipe) while those in Ad are drawn as single

lines.

Let md = (#pi; i 2 Pd) be the vector of the number of tokens in discrete places and let ~x = (xk; k 2 Pc)

be the vector of the 
uid levels in continuous places. We will say that md is the discrete marking of the

net. Let M denote the number of discrete markings, which will be indexed by the symbols i and j, with

i; j = 1; 2; � � � ;M . The complete state (marking) of a 
uid Petri net is described by the vector m = (~x;md)

where md is the marking of the discrete part of the state and ~x keeps track of the 
uid levels in the continuous

places. Let M be the set of all complete markings (~x;md) andMd be the set of all discrete markings. The

initial marking is m0 = (~x0;md0).

In our formulation an enabled transition in TE may drain 
uid out of its continuous input places, and

may pump 
uid into its continuous output places. The rates of 
ow may be dependent on the complete

marking (~x;md). In a general formulation of a stochastic Petri net (embodied, for example, by SPNP [7, 8])

the conditions for enabling can be speci�ed either through explicit arcs or through Boolean functions known

as guards. We will allow both of these possibilities. We will continue to use the enabling and �ring rules

employed in SPNP with the additional possibility of a guard associated with a timed transition being able

to base the enabling condition not only on the discrete marking of the net but also on the continuous part.

We disallow the enabling of immediate transitions by 
uid levels as this would lead to ~x-dependent vanishing

markings, which cannot be eliminated in a manner analogous to that of GSPNs. Thus the guard function G

is de�ned for any timed transition in TE so that G : T �M! f0; 1g: For a timed transition � 2 TE , G(�;m)

is a Boolean function that will be evaluated in each marking, and if it evaluates to true, the transition

may be enabled; otherwise � is disabled. Upon �ring, the transition removes a speci�ed number of tokens

from each discrete input place, and deposits a speci�ed number of tokens in each discrete output place.

The basic extension we have made from [18] here is that 
uid levels in continuous places can change the

enabling/disabling of timed transitions in the discrete part of the net. A discrete markingmd is said to be a

vanishing marking if one or more immediate transitions are enabled by it; otherwise it is a tangible marking.

The �ring rate function F is de�ned for timed transitions TE so that F : T E �M ! IR+: Thus if a

timed transition � is enabled in (tangible) marking m, it �res with rate F(�;m). Note once again that in

[18], these rates were not allowed to depend upon the 
uid levels but now we do allow the �ring rates to be

dependent on 
uid levels.

As in [18], the weight function W is de�ned for immediate transitions TI so that W : T I �Md ! IR+:

2



Thus if an immediate transition i is enabled in (a vanishing) marking md, it �res with probability

W(i;md)X
�2TI enabled in md

W(�;md)
:

Next we describe the evolution of the continuous part of the marking. The 
ow rate function R is de�ned

for the arcs connecting a continuous place and a timed transition so that R : Ac �M ! IR+ [ f0g: Thus

when the FSPN marking is mt 2M at time t, 
uid can leave place k 2 Pc along the arc (k; � ) 2 Ac at rate

R((k; � );mt) and can enter the continuous place k at rate R((�; k);mt) along the arc (�; k) 2 Ac for each

� 2 TE that is enabled in mt. The instantaneous rate at which 
uid builds in a place k 2 Pc at time t, in

marking mt, is then given by

rk(mt) =
X

�2TE enabled in mt

R((�; k);mt) �
X

�2TE enabled in mt

R((k; � );mt):

We require that for every discrete marking md and arc (�; k), the rate R((�; k); (~x;md)) be a \nice" function

of ~x, e.g., it is piecewise continuous. Observe that since mt contains continuous levels ~x, rk(mt) may change

as a function of t even if the discrete part of mt does not change. Once again we have extended the de�nition

in [18] by allowing these rates to be dependent on the 
uid levels.

Now let Xk(t) be the 
uid level at time t in a continuous place k 2 Pc. We assume that there is an upper

bound on the 
uid content, that is, Xk(t) � Bk for all t � 0. If there is no such upper bound, we set Bk to

1. Then the sample path of Xk(t) satis�es the di�erential equation

dXk(t)

dt
=

8>>>><
>>>>:

[rk(mt)]
+

if Xk(t) = 0

[rk(mt)]
�

if Xk(t) = Bk

rk(mt) if 0 < Xk(t) < Bk and rk(mt�)rk(mt+) � 0

0 if 0 < Xk(t) < Bk and rk(mt�)rk(mt+) < 0

(1)

In the case Xk(t) = 0 and rk(mt) < 0, we set the actual rate equal to zero (denoted by [rk(mt)]
+ =

max(rk(mt); 0)) in order to maintain Xk(t) � 0. In the case that Xk(t) = Bk and rk(mt) > 0, we set the

actual rate equal to zero (denoted by [rk(mt)]
� = min(rk(mt); 0)) in order to maintainXk(t) � Bk. For the

explantion of the remaining cases, we refer the reader to [10], Section II. The key observation (for the fourth

case) is that a sign change from + to � in rk(mt) at mt will \trap" Xk(t) to be constant. Finally, let Md(t)

be the discrete marking at time t.

In the next section we study the joint process (X(t);Md(t)), where X(t) = [Xk(t); k 2 Pc].
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3 Analysis

Recall thatXk(t) is the 
uid level in the k
th continuous place at time t. The reachability graph corresponding

to the discrete part of the net gives rise to a stochastic process that is a Markov process with the state space

M. In the special case that the discrete part of the net is not a�ected by the 
uid levels, discrete part of

the net gives rise to a CTMC[1]. Let S be the discrete state space and let Q(~x) = [qij(~x)] be the matrix

of transition rates derived from the �ring rate function F of section 2. S corresponds to the set of tangible

discrete markings inMd. For every ~x and place k 2 Pc de�ne the diagonal matrixRk(~x) = diag(rk(~x;md)),

md 2 S).

De�ne the distribution function H(t; ~x;md) = P (X(t) � ~x; and Md(t) = md) and let ~H(t; ~x) =

[H(t; ~x;md);md 2 S] be a row vector.

To begin with, we assume that the rate functions Rk(~x) are di�erentiable functions of ~x and transition

rates Q(~x) are piecewise right continuous functions of ~x. We also assume that the capacities of the continuous

places are in�nite. Under these assumptions, it can be shown that (X(t);Md(t)) has a density h(t; ~x;md)

for all ~x with non-negative components and md 2 S and has a probability mass c(t; ~x;md) if ~x has at least

one component equal to 0, where

c(t; ~x;md) =
P (Xk(t) = 0 if xk = 0; Xk(t) 2 (xk; xk + dxk) if xk > 0 8k)Q

k:xk>0 dxk

Let ~h(t; ~x) denote the corresponding row vector of h(t; ~x;md).

The next theorem gives the coupled system of partial di�erential equations satis�ed by ~h and c. These

equations describe the transient behavior of the FSPN.

Theorem 1:

The equations sati�ed by ~h are

@~h

@t
+
X
k

@(~hRk(~x))

@xk
= ~hQ(~x) (2)

c(t; ~x;md) = 0

if; for any k; xk = 0 and rk(~x;md) > 0 (3)

@

@t
c(t; ~x;md) +

X
k:xk=0

h(t; ~x;md)rk(~x;md)+

X
k:xk>0

@

@xk
h(t; ~x;md)rk(~x;md) =

X
i2S

c(t; ~x; i)qi;md
(~x)

if xk = 0 ) rk(~x;md) < 0 8k (4)
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Proof:

A rigorous proof can be obtained by using the same technique as in [12]. Here we provide an intuitive

proof for the ~h-equation.

Assume for simplicity only one 
uid place and r1(x; i) > 0. Consider a portion of the function h(t; x; i)

at one instant in time in the vicinity of the location x = xl. We consider a cell surrounding this point whose

left and right boundaries are located at x� and x+ respectively. Let the discrete values h(t; xl; i) and qij(xl)

represent the mean values of h and qij respectively within the cell. This situation is illustrated in Figure 1.

h(t,x,i)

h(t,x,j)

qji

-q
ii

- +

-

∆

+

(x )

x xx

(x )

x

x x x

l

l

l

l

Figure 1: Derivation of FSPN equations

Probability mass must be conserved. We may therefore derive a balance equation for the change in

probability mass inside the cell:"
change in probability

mass in cell

#
=

"
total mass

entering cell

#
�

"
total mass

leaving cell

#
:

Probability mass enters the cell at the location x� at the rate r(x�; i) and leaves at x+ at the rate r(x+; i).

In addition the cell gains probability from the corresponding cell of each other discrete marking mj ; j 6= i

at the rate qji(xl) and loses probability to them at a total rate of �qii(xl). The balance equation for the cell

probability mass becomes

�x
dh(t; xl; i)

dt
= h(t; x�; i)r1(x�; i)� h(t; x+; i)r1(x+; i) + �x(

X
j 6=i

qji(xl)h(t; xl; j) + qii(xl)h(t; xl; i)): (5)

The equation is identical for the case r1(x; i) < 0. Dividing the vector form of equation (5) by �x and taking

the limit as �x! 0 we obtain
@~h

@t
+
@(~hR1(~x))

@x
= ~hQ(~x):

The argument generalizes easily to the case of more than one 
uid place, yielding equation (2). The cell is

in general a hypercube of sidelength �x.
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The boundary conditions follow from the fact that h(t; ~x; i) is a probability density function.

2

Theorem 2:

The equations for the cumulative probability distributions ~H are

@ ~H

@t
+
X
k

@

@xk
( ~HRk(~x)) = ~HQ(~x)�

Z xF

0

. . .

Z x1

0

~H
@Q(~x)

@xk
dx1 . . .dxF (6)

with the boundary conditions

H(t; ~x; i) = 0 at xk = 0; if rk(~x; i) > 0 (7)

lim
xk!1

@ ~H

@xk
= 0: (8)

Proof:

Using the abbreviations

@ ~H

@~x
=

@(F ) ~H

@x1 . . .@xFZ ~x

~0

d~x =

Z xF

0

. . .

Z x1

0

dx1 . . .dxF

and noting that

H(t; ~x; i) = c(t; ~x; i) +

Z ~x

~0

h(t; ~x; i)d~x

we substitute into Equation (2) and integrate with respect to ~x:

Z ~x

~0

@

@t

 
@ ~H

@~x

!
d~x+

Z ~x

~0

X
k

@

@xk

 
@ ~H

@~x
Rk(~x)

!
d~x =

Z ~x

~0

@ ~H

@~x
Q(~x) d~x

which yields (6). Equation (4) is implicitly contained in Equation (6), along with the boundary condition

(7).

The boundary condition (7) follows from the observation that the 
uid level in place k cannot remain

at 0 for a positive amount of time in state md if the net rate rk(~x;md) > 0. The boundary condition (8)

comes from the observation that H represents a probability distribution with respect to each xk, and must

therefore approach an asymptotic value xk tends to in�nity (or reaches its maximal value).

2

This method of deriving partial di�erential equations that represent conservation laws is well established

in computational 
uid dynamics, where it is known as the \Finite Volume" technique [15].
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The assumptions on Rk(~x) can be relaxed and we can allow Rk(~x) to be piecewise di�erentiable and


uid places to have �nite capacities. This may introduce non-zero probability masses at the inter-region

boundaries and will need to be explicitly accounted for.

The domain of Equations (2) and (6) is

0 < xk < Bk

0 < t <1;

although in practice we will only be interested in the �nite domain 0 < t < tmax, 0 < xk < minfxmax;Bkg

(where xmax is �nite when Bk =1).

The initial conditions for Equation (6) are

H(0; ~x; i) = 1 if i = md0 and ~x � ~x0

H(0; ~x; i) = 0 otherwise:

The initial conditions for Equation (2) are

c(0; ~x; i) = �(m0)

where � is the delta function.

Now suppose the following limits exist

~F (~x) = lim
t!1

~H(t; ~x):

Then fromTheorem 2, we see that the steady-state distribution ~F (~x) obeys the following system of di�erential

equations X
k

@

@xk

�
~F (~x)Rk(~x)

�
= ~F (~x)Q(~x)�

Z ~x

~0

~H
@Q(~x)

@xk
d~x; (9)

with the normalization condition lim
~x!1

~F (~x)~e = 1, where ~e is a column vector of all 1's.

We note that the steady-state distribution ~F exists when

lim
xk!1

X
i

�i(~x)rk(~x; i) < 0 k = 1 . . .F

where �(~x) is the solution of

�(~x)Q(~x) = 0X
�i(~x) = 1

7



3.1 FSPN with a Single Continuous Place

In the special case of a single continuous place, Equation (9) reduces to:

d

dx
(~F (x)R(x)) = ~F (x)Q(x)�

Z x

0

~F
@Q(x)

@x
dx: (10)

In the following subsections, we consider three special cases of the Equation (10).

3.1.1 Constant Case

In the special case that R(x) and Q(x) are both independent of x, following [3], solution of such an equation

is of the form ~F (x) = ~he�x where ~h is a row vector and � is a scalar. Substituting in (10) we have

~h(�R�Q) = 0: (11)

If a non-zero ~h is to satisfy the above equation, we must have det(�R�Q) = 0. The number of solutions

of det(�R�Q) = 0 equals the number of non-zero diagonal elements of R(x). Let these solutions be denoted

by �1; �2 � � � ; �k. Let ~hi be the solution to ~hi(�iR�Q) = 0. Then the general solution to (10) is given by

~F (x) =

kX
i=1

ai~hie
�ix (12)

where the scalars ai need to be determined from the boundary conditions and the boundedness of ~F (x). It

is known that the number of �i's with positive real part equals the number of negative diagonal entries of

R. The coe�cient ai corresponding to an eigenvalue �i with Re(�i) > 0 must be zero in order to maintain

boundedness of ~F (x). The remaining coe�cients ai are uniquely determined by the boundary condition

F (0;m) = 0 if r(m) > 0:

Now if R(x) and Q(x) are both piecewise constant functions of x, we can apply the above procedure

for each di�erent segment and piece the individual solutions together [10]. In the general case, we can use

numerical solution methods for linear odes that are available. We refer here to explicit methods such as

RKF-45 or implicit methods such as implicit Runge-Kutta [4] or TR-BDF2 [5] and so on.

4 Examples

Next we examine a number of examples to illustrate the modeling power of FSPNs.
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Figure 2: FSPN Model of Statistically Multiplexed Network Switch

4.1 Statistical Multiplexing of a Network Switch

For our �rst example, we recast the problem studied in [10] as a FSPN. We have K sources of ATM cells.

Each source emits both high priority and low priority cells; the arrival rate of each depends on the state of

a two-state Markov chain, e.g., if the source's Markov chain is in state s 2 [1; 2], then the rate at which high

priority cells is produced is �
(s)
hi , and the rate at which low priority cells is produced is �

(s)
low . All cells are

delivered to a single switch, with bu�er capacity B. All low priority cells are discarded when the bu�er level

is greater than some Bt < B.

The FSPN for this problem is illustrated in Figure 2. The number of tokens in place pi re
ects the

number of sources in state i, i = 1; 2. The rate at which sources change from state 1 to 2 (alt., 2 to 1)

is #p1�1 (alt., #p2�2 ). Letting r
high
i and rlowi denote the rate at which high and low priority cells are

generated by a source in state i, the aggregate arrival rate of 
uid to the bu�er from sources in state i is a

function of the discrete marking :

fi(#p1;#p2) = #pi(r
high
i + rlowi ):

The overall arrival rate as a function of the discrete marking is


(#p1;#p2) = f1(#p1;#p2) + f2(#p1;#p2):

The 
uid level in the place loss re
ects the total cell loss since time 0 (like the cell bu�er, it is initially

empty). The rate c(x) at which cells are successfully switched out of the bu�er with level x is c(x) = c if

x > 0, and c(x) = 0 if x = 0. Of more interest is the function L(#p1;#p2; x) describing the rate of cell loss
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Figure 3: FSPN for the Machine Breakdown Model

(both into and out of the transition so labeled):

L(#p1;#p2; x) =

8>>>><
>>>>:

[
(#p1;#p2)� c]+ if 0 � x � Bt

#p1r
low
1 +#p2r

low
2 + [#p1r

high
1 +#p2r

high
2 � c]+ if Bt < x < B

#p1r
low
1 +#p2r

low
2 + [#p1r

high
1 +#p2r

high
2 � c]+�

[c�#p1r
high
1 +#p2r

high
2 ]+ if x = Bt

:

When x � Bt, low priority cells are not discarded automatically, and any loss is the di�erence between the

aggregate arrival rate and the service rate. Low priority cells are dropped automatically when Bt < x � B,

and further loss may be due to an inability of the server to keep up with the aggregate high priority arrival

rate.

4.2 Machine Breakdown Model

In the previous example, 
uid levels have no e�ect on the behavior of the discrete portion of the FSPN. The

next example shows how 
uid levels may a�ect the �ring rate of discrete transitions. Consider a system with

N statistically identical and independent components, each with a failure rate that depends on the overall

system load [11]; the repair rate is �. Work arrives to the system at a constant rate r and is completed at

rate d per functioning machine. Work here is considered to be a non-negative real quantity. We model this

system as an FSPN shown in Figure 3.

The model has two discrete places (pu and pd), one continuous place and three timed transitions (tf , tr

and talways). The number of tokens in pu models the number of functioning machines (with the initial value

N ) while the number of tokens in pd is the number of failed machines undergoing repair. The �ring of the

transition tf represents a machine failure; given positive failure rates �1 and �2 and positive scaling factor

�, the load-dependent �ring rate of this transition with 
uid level x is taken to be

f(#pu; x) = #pu(�1 + �2(1:0� e��x)):
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Figure 4: FSPN model of an alternating switch

Repair of a machine is modeled by the �ring of tr; its �ring rate is � times the number of tokens in pd. The

transition talways is always enabled and it continuously pumps 
uid at rate r into the continuous place. The

rate of �ring of this transition can be chosen to be any positive value. Whenever transition tf is enabled, it

drains 
uid from the continuous place at rate d times the number of tokens in place pu.

4.3 Alternating Switch

In the next example we model a communcation switch with two arrival streams. One stream is bursty, with

a high arrival rate rhigh when active. It is described as an alternating process, that is on for an exponential

period of time with rate �on, and o� for an exponential period of time with rate �off . The other stream is

slow, but constant (rlow). The switch services workload from either stream at rate �.

The switch is designed to allocate exponentially distributed time-slots to each stream, with rates �high

and �low . The time slots alternate|the fast stream is given a slot, then the slow stream, and so on. The

FSPN modeling this switch is illustrated in Figure 4.
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5 Numerical Transient Analysis

5.1 Discretization

We choose to solve the equations for the probability distribution (6) rather than the density equations

(2), since the latter would require the numerical treatment of a delta function used to describe the initial

condition. We describe here the case R(~x) = const, Q(~x) = const.

We perform a semi-discretization of (6) in the coordinate directions xk, using a �rst-order upwind method.

In the nomenclature of section 3, the upwind scheme approximates values at the boundaries of the cell by

those at the neighbouring grid points in the upstream direction, relative to the 
ow direction r. We choose a

�nite domain 0 < xk < xmax and use G equidistant grid points. The grid spacing (mesh size) �x is therefore

equal to xmax=(G � 1). Note that in order that the boundary condition (8) be approximately satis�ed,

xmax must be chosen to be su�ciently large. We use the notation rk;l1;...;lF ;i = rk(l1�x; . . . ; lF�x; i),

qi;j;l1;...;lF = qij(l1�x; . . . ; lF�x) and ~Hi;l1;...;lF (t) = H(t; l1�x; . . . ; lF�x; i) . The upwind discretization is

given by

@

@xk
H(t; . . . ; xk = lk�x; . . . ; i) �

8<
:

1
�x

�
~Hi;...;lk;...(t)�

~Hi;...;(l�1)k;...(t)
�

if rk;...;lk;...;i � 0

1
�x

�
~Hi;...;(l+1)k;...(t) �

~Hi;...;lk;...(t)
�

if rk;...;lk;...;i < 0
: (13)

We obtain from the semi-discretization the linear system of ordinary di�erential equations

d ~H

dt
= ~H ~Q (14)

where the unknown vector

~H =
�
~H1;01;...;0F ;

~H1;01;...;1F ; . . . ;
~HM;G�11;...;G�1F

�
is obtained by a lexicographic ordering of the unknowns by 
uid place and by the discrete marking.

The matrix ~Q is given by

~Q = �Q+W

where �Q represents the CTMC of the discrete part of the net, and W the discretization of the space

derivatives multiplied by the 
ow rates.

The matrix �Q is given by

�Q =

2
664

Q11 . . . Q1M

...
. . .

...

QM1 . . . QMM

3
775

12



where

Qij =

2
664
qij;01;...;0F

. . .

qij;(G�1)1;...;(G�1)F

3
775 :

Note that the matrix �Q is a CTMC matrix. The block-diagonal matrixW has the form

W = �
1

�x

2
664

W1 0

. . .

0 WM

3
775

where Wi 2 IRGF
�GF

represents the discretization of the second term of equation (6) for the i-th discrete

marking using the upwind method (13). Each Wi is a sparse, banded matrix in which each column is either

zero or has a positive main diagonal coe�cient and non-positive o�-diagonal coe�cients containing the rate

values ri;.... In addition, the main diagonal coe�cient is the negative sum of the other entries in its column.

Each Wi, and thus also W, therefore represents the transpose of a CTMC.

The linear system of ordinary di�erential equations (14) thus de�ned may be integrated by any standard

method. In the numerical examples in section 6 we will use the Forward Euler scheme

~H(t+�t) � ~H(t) + �t ~H(t) ~Q:

Note that for this scheme the discretization mesh sizes must satisfy

max
k;l1;...;lF ;i

rk;...;i�t < �x (15)

in order that the integration be stable.

5.2 Numerical Integration in a Transformed Domain

In order to avoid the di�culty of solving equation (6) in an arbitrarily large and a priori unknown domain,

we can perform the coordinate transformation

yk = 1� e�xk (16)

which maps the in�nite interval xk = [0;1] to the �nite interval yk = [0; 1]. Equation (6) then becomes

@ ~H

@t
+
X
k

@ ~H

@yk
Rk(~y)(1 � yk) = ~HQ(~y)�

Z y

0

~H
@Q

@~y
dy (17)

for ~H(t; ~y). The boundary and initial conditions remain unchanged.

This minor modi�cation to the equations makes their solution signi�cantly easier, since the decision

where to place xmax must no longer be made, and the danger of an inappropriate choice is avoided. The

13



coordinate transformation has the additional advantage of compressing the in�nite interval of the large x

values, where in many cases the solution shows virtually no structure, into a small space. Furthermore,

we can obtain numerical values at x = 1, which correspond to the probabilities for the discrete markings,

whereas in the untransformed case these must be approximated by values obtained at x = xmax.

5.3 Problem Size

Recall that G denotes the number of gridpoints in each dimension xi, F the number of 
uid places, and M

the number of discrete markings. The number of time-steps to be integrated is T .

The computational complexity for the solution is O(TMGF ) 
oating point operations, since for each of

T timesteps we must increment each solution value in an F -dimensional grid of sidelength G for each of

M discrete markings using O(1) operations. Note that for an explicit integration method such as Forward

Euler, because the condition (15) must be satis�ed, an increase in G must ultimately be accompanied by a

proportionate increase in T .

The storage requirements of the algorithm are at least 4MGF bytes since for each ofM discrete markings

we must store an F -dimensional grid of 
oating point numbers with sidelength G. Solutions at successive

time-steps can be overwritten.

Since the sidelength of the grids Gmay typically be of the order of 50 or more when a simple discretization

is used, we see that this would seriously limit the size of the FSPNs that can be solved. Future work must

therefore include strategies for reducing the amount of memory needed to represent the function H.

5.4 Time Integration by Randomization

Randomization is a numerical method widely used for the solution of systems of ODEs of the form (14). It

has the advantages of high numerical stability and low roundo� error, a priori speci�cation of absolute error

tolerance requirements, and is in addition often found to be faster than numerical integration schemes. The

method has superior roundo� error behavior when the matrix P = (I + 1
�
~Q) has all non-negative entries,

where � � max j ~Qiij. This is, for example, the case for a CTMC.

As the following Theorem shows, the semi-discretized FSPN equation (14) also has this property, indi-

cating that randomization may be the method of choice for computing transient solutions.

Theorem 3:

For the matrix P = (I + 1
�
~Q) where ~Q is the matrix of equation (14) holds

Pij � 0 8i; j

14
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Figure 5: Numerical Solution of Breakdown Model

Proof:

It is su�cient to show

~Qii;Wii � 0; and ~Qij;Wij � 0 i 6= j (18)

� ~Qii � ~Qij; ~Qji i 6= j (19)

We have

�Qii;Wii � 0; �Qij;Wij � 0 i 6= j

�Qii = �
X
i6=j

Qij; �Wii = �
X
i6=j

Wij

since �Q is a CTMC and W represents an upwind discretization. Equations (18) and (19) follow directly

from ~Q = �Q+W.

6 Numerical Examples

6.1 Machine Breakdown Model

For our �rst illustration of the behaviour of an FSPN we choose the model of section 4.2. We consider the

case of one processor only, and parameter values of �1 = 2, �2 = 0, � = 3, r = 1 and d = 2. In this case,

both R and Q are independent of ~x. We solve the equations for the distribution (6) in the range 0 � t � 4,

0 � x � 4. We discretized with stepsizes �x = 1=64 and �t = 1:0e � 4. The numerical results for this

problem are shown in Figure 5.

For this simple case, it can be shown via Laplace transforms that the steady state solution is given by

H(x; UP ) = 0:4(1� e�x)
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Figure 6: Numerical Solution of Modi�ed Breakdown Model

H(x;DOWN ) = 0:2(3� 2e�x)

The transient solution values obtained at t = 4 agree closely with these results.

Now we modify the example to allow dependency of the matrices R and Q on the 
uid level X. First we

extend the model to contain a backup server which is only used when the primary server is down and the

load level reaches a value of 0.5. We thus have

d =

8><
>:

2 md = UP

0 md = DOWN; x < 0:5

2 md = DOWN; x � 0:5

The dependency of Q on x is obtained by setting

� = �1 + �2(1� e��x)

choosing � = 1, �1 = 1 and �2 = 2. The results of this computation are depicted in Figure 6. Note the

discontinuity and change of slope at x = 0:5, when the backup server is started.

Figure 7 shows the results for the unmodi�ed breakdown model, using the equation in transformed

coordinates (17). Here integration until t = 24 has been performed. Note that the solution obtained for

H(DOWN ) at t = 24 appears as a straight line through the origin with gradient 0.4, corresponding to the

analytic solution of Equation (20).

6.2 ATM Switch Model

We now consider the multiplexed network switch model considered in section 4.1. We set the number of

sources K to one, parameters B1 = 3000 and B = 6000. High priority packets arrive at the rate 6� 103 and

low priority packets at a rate of 4� 103 per second when the source is in state 1, and at rates 4� 103 and
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Figure 7: Probability distributions for breakdown model in transformed coordinates. Left: Server up; Right:

Server down.

1000
2000

3000
4000

5000
6000

7000

5

10

0

0.5

1

x
t

Source state 1

1000
2000

3000
4000

5000
6000

7000

5

10

0

0.5

1

x
t

Source state 2

Figure 8: Probability distributions for ATM switch model. Left: Source state 1; Right: Source state 2.

2� 103 per second respectively when the source is in state 2. The switch can process both types of packet

at a rate of 5� 103 per second. The exponentially distributed rates of change between high and low priority

packet generation are �1 = 0:5 and �2 = 0:5. The results for the number of packets in the bu�er are shown

in Figure 8. The left and right results at t = 10 qualitatively match those of Elwalid and Mitra [10], Figure

2, right and center, respectively. An appropriate choice of parameters also yields a result, not illustrated

here, which is similar to [10], Figure 2, left.

7 Conclusion

We have de�ned a new class of stochastic Petri nets by introducing places with continuous tokens and arcs

with 
uid 
ows. This new class of 
uid stochastic Petri nets (FSPNs) should be useful in modeling stochastic


uid 
ow systems, and may also be useful in modeling processes that control physical systems. Our model

formulation permits the discrete and continuous parts to a�ect each other, endowing FSPNs with the ability
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to both control the 
uid 
ow, and have the discrete control decisions be a�ected by observed 
uid 
ow.

We have provided formal de�nition of FSPNs and developed the rules for their dynamic evolution. We

have derived coupled systems of partial di�erential equations for the transient and the steady-state behavior

of FSPNs. Spectral representation of the FSPNs with a single continuous place can be adapted from the

literature on stochastic 
uid 
ow models. We have presented a number of examples illustrating the modeling

power of FSPNs, have considered issues arising in the numerical solution of the dynamical equations, and

have provided numerically solved examples.
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